
1
American Institute of Aeronautics andAstronautics

AIAA-98-1779

NEURAL NETWORKS FOR RAPID DESIGN AND ANALYSIS

Dean W. Sparks, Jr.
*
 and Peiman G. Maghami

NASA Langley Research Center, Hampton, VA 23681-0001

 Abstract

Artificial neural networks have been employed for
rapid and efficient dynamics and control analysis of
flexible systems. Specifically, feedforward neural
networks are designed to approximate nonlinear dynamic
components over prescribed input ranges, and are used
in simulations as a means to speed up the overall time
response analysis process. To capture the recursive
nature of dynamic components with artificial neural
networks, recurrent networks, which use state feedback
with the appropriate number of time delays, as inputs to
the networks, are employed. Once properly trained,
neural networks can give very good approximations to
nonlinear dynamic components, and by their judicious
use in simulations, allow the analyst the potential to
speed up the analysis process considerably. To
illustrate this potential speed up, an existing simulation
model of a spacecraft reaction wheel system is executed,
first conventionally, and then with an artificial neural
network in place.

 Introduction

The overall design process for aerospace systems
typically consists of the following steps: design,
analysis and evaluation. If the evaluation is not
satisfactory, the process is repeated until a satisfactory
design is obtained. Dynamics and control analyses,
which define the critical performance of many aerospace
systems, are particularly important. Generally, all

*
 Aerospace Technologist, Guidance and Control

Branch.

 Senior Research Engineer, Guidance and Control

Branch, Senior Member, AIAA.
Copyright Ó 1998 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S. Code.
The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein for
Governmental purposes. All other rights are reserved
by the copyright owner.

aerospace systems experience excitations resulting from
internal and external disturbances, for example,
aerodynamic turbulence encountered by aircraft or
instrument scanning in space systems. Excessive
vibrations due to turbulent aerodynamics could diminish
the ride quality or safety of an aircraft. In space
systems, excessive vibrations could be detrimental to its
science instruments which usually require consistently
steady pointing in a specified direction for a prescribed
time duration. Typically, in the course of the design of
an aerospace system, as the definitions and the designs
of the system and its components mature, several
detailed dynamics and controls analyses are performed in
order to insure that all mission requirements are being
met. These analyses, although necessary, have
historically been very time consuming and costly due to
the large number of disturbance scenarios involved, and
the extent of time domain simulations that need to be
carried out. For example, a typical pointing
performance analysis for a space system might require
several months or more, which can amount to a
considerable drain on the time and resources of a space
mission.

It is anticipated that artificial neural networks
(ANNs) can be used to significantly speed up the design
and analysis process of aerospace systems. This paper
will focus on the application of ANNs in
approximating nonlinear dynamic components in
simulations, in order to reduce overall time domain
analysis time and compute effort. Initial work has
shown that ANNs, once properly trained, can be used in
place of nonlinear dynamical systems in simulations.
These ANNs can give very good approximations of the
systemsÕ outputs, and they can drastically reduce
computational burden in running the overall simulation.
A numerical example of a dynamical system simulation
with an ANN is presented, and comparisons between
conventional (i.e., without the ANN) simulation times,
in terms of computer processing unit (CPU) seconds,
versus simulation times with the ANN in place is
made.

The paper is organized as follows. After this
introduction section, a brief description on conventional
dynamics analysis is given. Next, discussions on

2
American Institute of Aeronautics andAstronautics

neural networks, their use in approximating functional
relationships, together with a typical design outline, is
presented. Then, numerical results of an example
application of an ANN in a simulation is reported.
Finally, a conclusions section closes the paper.

 Conventional Dynamics Analysis

Conventional dynamics analysis can be divided
into two categories: time domain analysis and
frequency domain analysis. Both are used to determine
specific characteristics of a system performance, but as
implied by their respective names, the characteristics are
either defined in terms of time or as a function of
frequency. In this paper, the emphasis will be on time
domain analysis. Time domain analysis tries to
compute the transient and steady state time responses of
a system given specific inputs. Examples of typical
system response characteristics, which are studied in
time domain analysis, include transient system response
maximum overshoot, rise and settling times. Another
is the systemÕs steady state performance, which is
usually defined by some metric on the steady state error
between the system response and a reference signal. If
the system is simple enough, i.e., linear, of very low
order and has relatively few inputs and outputs, like a
single-input, single-output (SISO) system, its
responses can be obtained by direct solution of the
system equations which describe the model. However,
most realistic system models are of high order and/or
nonlinear, which precludes a direct solution. The usual
procedure in this case is to construct a simulation of the
system to obtain the time responses, via integration
(e.g., Runge-Kutta methods) of the systemÕs equations
of motion. There are available several simulation-based
packages, such as MATRIXx/System Build and
MATLAB/Simulink, which can perform whatever time
domain analysis is required. However, even with these
tools, computing time response solutions can be
expensive both in terms of time and effort, depending
upon a number of factors, such as the order of the
system, the number of inputs and outputs, the level of
nonlinearities, the type and level of disturbance inputs
and/or reference signals, and the kind of integration
selected.

Whatever type of analyses need to be done, it
would be highly beneficial to the analyst to be able to
rapidly assess the effects on system time response
performance due to the almost inevitable design changes
that a system will undergo during its lifetime. During
the design phase of an aerospace system, almost all
components go through some level of change, with
each change having the potential to affect the

performance of the overall system to some degree. In
many instances, these changes are expected to affect the
performance of the system to such a degree as to warrant
a partial or full analysis of its performance. In the area
of spacecraft dynamics and controls, these types of
changes include: changes in the inertia or flexibility of
the structural components which would affect the
dynamic characteristics of the spacecraft; changes in the
characteristics of the external and internal disturbances
that may act on the spacecraft while it is in orbit; or
changes in the control system design, hardware, and
software. For example, for a reaction wheel system,
changes could include: wheel size, nonlinear friction
characteristics, or wheel speed internal controller design.
Now, depending on the nature and extent of these
changes, there may be a need to reevaluate the controlled
dynamical responses of the system. The computational
time and cost associated with each of these performance
analyses (i.e., executing conventional time simulations)
may be substantial. The cost can be exorbitant
especially if the analysis has to be repeated several
times during the design phase. One approach to this
problem is to use artificial neural networks (ANNs) to
help speed up the analysis.

 Rapid Analysis with ANNs

The motivation behind the use of ANNs is to
speed up the analysis process substantially. The main
use of ANNs lies with their ability to approximate
functional relationships, specifically nonlinear
relationships. This can be either a static relationship,
one that does not involve time explicitly, or a dynamic
relationship, which explicitly does involve time.
Dynamic approximations via ANNs can be achieved by
using the appropriate time delays and feedback of the
output back to the input, which is defined as recurrence.
Such networks are referred to as recurrent networks1,2.
In any case, to an ANN, there is no distinction between
a static or dynamic map, there is just input/output data.
For example, an ANN could be designed to approximate
the dynamic behavior of a nonlinear component, e.g.,
the mapping between the nonlinear torque output of a
spacecraft reaction wheel and its angular wheel speed and
input torque command. Once such a network is trained,
the torque output of the wheel, for given wheel speed
and torque command inputs, can be easily obtained by
simulating the ANN. One application of ANNs is to
use them to speed up the simulation process and
therefore, the overall analysis time. For example,
ANNs can be designed to approximate the outputs of a
continuous-time, nonlinear system, with outputs
computed for a specified discrete step. This way, the

3
American Institute of Aeronautics andAstronautics

traditional continuous-time integration (e.g. Runge-
Kutta) of the nonlinear dynamics can be replaced by
discrete-time nonlinear algebraic updates, with
reasonable accuracy. Although the initial training time
for an ANN may be long, it can be performed during off
hours, in a semi-automated manner, without much
direct involvement by the designer. Also, once an ANN
has been designed to represent a dynamic component, it
can be stored in a component library and recalled for use
in future analyses.

The successful design of an ANN depends on the
proper training of the network. The training of a
network involves the judicious selection of points in
the input variable space, which along with the
corresponding output points, constitute the training set.
In the reaction wheel example, in order to properly train
an ANN approximation, it is important that the input
points, i.e., the wheel speed and commanded torque
values, completely cover the range of possible values
for both. In addition, it is important that enough points
are selected such that they cover areas where fine
resolution in the design space is required, i.e., areas
where small variations in input data cause large
variations in the corresponding output data. Of course,
there will be the inevitable trade-off between selecting
enough points for good training and keeping the number
of training points down to practical levels for
computation.

Before proceeding, it is important to restate here
that the true advantage of using ANNs lies with
modeling nonlinear relationships. Although one can
certainly use ANNs to represent linear systems, there
will be no gain, in terms of reductions in compute time
and effort, in their use over conventional representations
of the same linear systems. One can always take any
pure linear, dynamical system and rewrite it as a series
of output difference equations, which are functions of
appropriate time-delayed output feedbacks and input
signals. It turns out that the coefficients of these
system output equations are equivalent to the
Òweighting coefficientsÓ (which are defined in the
following subsection) of pure linear ANNs, with the
ÒbiasÓ parameters (see following subsection) set to
zeros. Thus, there would be no point in training ANNs
to represent linear dynamical systems. Therefore, the
work reported in this paper will only cover representing
nonlinear systems with ANNs.

In the following subsections, a brief overview of
ANNs and the training of a specific type of ANN that
was used in this work, are presented.

 Artificial Neural Networks (ANNs)
Artificial neural networks (ANNs) have grown

into a large field since their inception, and a complete
discussion on them is beyond the scope of this paper.
Instead, this section will present a very brief description
on ANNs. ANNs were developed as an attempt to
mimic the process of the human brain. They consist of
groups of elements (called neurons) which perform
specific computations on incoming data, with
interconnections which permit data flow from one group
of neurons to the next, similar to the way groups of
biological neurons receive and transmit information
through dendrites and axons, respectively, in a brain.
Like their biological counterparts, ANNs can be trained
to perform a variety of tasks, such as modeling
functional relationships. The parameters of the ANN,
when presented with the appropriate input and output
data related to a specific functional relationship, can be
adjusted such that the ANN can give a good
representation of that relationship. This feature is
particularly useful when the relationship is nonlinear
and/or not well defined, and thus difficult to model by
conventional means. Also ANNs, by their very nature,
are a perfect fit for efficient parallel computations on
digital computers. Though there are several types of
ANNs, in this paper, only the feedforward ANN will be
discussed.

A typical feedforward ANN is depicted in Figure 1,
with m inputs and np outputs, and each

...
...

...
...

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

input 1

input 2

input m

output 1

output 2

output np

 Figure 1. Typical feedforward ANN.

circle, or node, representing a single neuron. The name
feedforward implies that the data flow is one way
(forward) and there are no feedback paths between
neurons. The output of each neuron from one column
is an input to each neuron of the next column. Using
the typical naming convention, each column of neurons
is called a layer, the initial column where the inputs
come into the ANN is called the input layer, and the
last layer, i.e., where the outputs come out of the ANN,
is denoted as the output layer. All other layers in
between are called hidden layers. These ANNs can have
as many layers as desired, and each hidden layer can have

4
American Institute of Aeronautics andAstronautics

as many neurons as desired. Each neuron can be
modeled as shown in Figure 2, with n being the number
of inputs to the neuron.

..

.

w1

w
2

wn

S

b

Activation
Function

output
from

neuron

inputs
to

neuron

Figure 2. Representation of a neuron in the feedforward
 ANN.

Associated with each of the n inputs is some adjustable
scalar weight, wi , i = 1, 2, ..., n, which multiplies that
input. In addition, an adjustable bias value, b, can be
added to the summed scaled inputs. These combined
inputs are then fed into an activation function, which
produces the output of the neuron. The activation
function can take on many forms to shape the output;
three of the more common functions are linear, tan
sigmoid, and log sigmoid, as shown in Figure 3. The

1

1

1

-1

1

0 0 0

linear tan sigmoid log sigmoid

 Figure 3. Three common activation functions.

linear activation function simply outputs the input; the
tan sigmoid function is the hyperbolic tangent function,
with output values between [-1,1] for inputs (-¥,+¥);
while the log sigmoid is also a nonlinear function,

which can be written as y e x= + -1 1/() , with the

outputs values, y, in the range [0,1], given inputs, x, in
the range (-¥,+¥). During training, the set of weights
and bias terms associated with the neurons are adjusted
until the output of the ANN matches, to within some
specified level of tolerance, the true outputs for the
same inputs.

 Training of a Feedforward Network
The objective is to design a feedforward network to

map the functional relationship between a set of input
points and a corresponding set of output points, or
target points. To accomplish this task, a feedforward
network, like the one shown in Figure 1, but with only
one hidden layer, is considered. The input layer has nc

nodes, corresponding to the elements of the input
vector, while the output layer has np nodes, which
correspond to the elements in the output vector. The
number of nodes in the hidden layer is arbitrary,
however, it has to be large enough to guarantee
convergence of the network to the functional
relationship that it is to approximate. Once the number
of nodes in the hidden layer has been chosen, the
network design is reduced to adjusting, or training, the
weighting coefficients and biases. The parameters of
feedforward networks are usually trained using either a
gradient method named the back propagation method1,2,
or a pseudo-Newtonian approach, such as the
Levenberg-Marquardt3 technique. Typically, in these
methods, the weights and biases are trained to minimize
some cost function of the error of the network. The
network error is defined as the difference between the
output of the true system and that of its ANN
approximation, for a given set of inputs. The cost
function is usually taken as the sum squared error of the
network over all of the input points. If q sets of points
(e.g., points taken for q time samples) are used for
training the network, then the input U to the network
would be an nc x q matrix, with each column
corresponding to a set of input points for a given time
sample, and the output Yp would be a nc x q matrix,
with each column of Yp corresponding to that of U.
Now the cost function, in terms of the sum squared
error of the network, can be written as

E e k Y j r Y j rd p
j

n

r

q

k

qn pp

= = -
===
ååå () ((,) (,))2 2

111

 (1)

where Yd is a np x q matrix of the target outputs. The
typical procedure is to keep updating the weights and
biases until the error E goes below some specified
tolerance level. At this point, the feedforward network
is considered trained.

It has been shown in the literature that a
feedforward network with only one hidden layer can
approximate a continuous function to any degree of
accuracy4-6. It is obvious that this capability carries
over to networks with more than one hidden layer. The
use of feedforward ANNs has some advantages over the
conventional approximation techniques, such as
polynomials and splines. For example, polynomials
are hard to implement in hardware due to signal
saturation, and if they are of higher order, there may be
stability problems in determining the coefficients.
ANNs, on the other hand, are very amenable to hardware
implementation. As a matter of fact, to date, several
VLSI chips based on multilayer neural network
architecture are available7,8.

5
American Institute of Aeronautics andAstronautics

 Reaction Wheel Model Example

In order to illustrate the feasibility of using ANNs
to approximate dynamic components, a model of a
reaction wheel assembly, consisting of three reaction
wheels, one each for the roll, pitch, and yaw axes of a
spacecraft, was selected as a test application. Figure 4
shows the block

Wheel
Friction
Function

1
S Jwp

30Tact M
w

Tcom Wsp

Figure 4. Example Reaction Wheel Model.

representation of a reaction wheel model in this
assembly; this model was used for all three wheels.
This model is fairly simple in nature, and consists of
the following: the input, Tcom, is the torque command
(in units of N-m) to the reaction wheel, which is
updated every 1.024 seconds; Tact , in N-m, is the actual
torque output of the wheel, which includes nonlinear
viscous friction torque; the wheel momentum, Mw; and
the angular wheel speed, Wsp, which is converted into
units of revolutions per minute (RPM). The parameter
Jw is the wheel inertia. The actual torque output of the
wheel, Tact , is the combination of the torque command
and viscous friction torque, Tfric , (which takes the
opposite sign of that of the wheel speed Wsp):

 T T T sign Wact com fric sp= - * () . (2)

Two different nonlinear functions were used to

model the wheel friction torque: a quadratic function in
terms of wheel speed; and an exponential function in
terms of wheel speed. In each case, an ANN was
designed to approximate the dynamics of the wheel.
The results are presented in the following subsections.

 Quadratic Friction Function
In the first case, the wheel viscous friction torque

was modeled with a quadratic function in terms of Wsp,
which is given below:

T aw

aw
aw W

fric

sp

=

+
=

-

-

3 367176 10

2 41045 10

5

6 2

. *

. * ,

x

x
. (3)

The above wheel model is continuous and

nonlinear, and in the past, has been simulated using a

Runge-Kutta (2,3) variable step size integration for
accurate, but time consuming, integration. The error
tolerance for the integration was set at 10-6, the
minimum step size set at 10-8 seconds, and the
maximum step size at one time sample of 1.024
seconds. Note that the tight error tolerance was required
for solution accuracy. One way to speed up the
simulation was to convert the continuous-time model
into a discrete-time model, and then use discrete updates
at every 1.024 seconds to propagate the system state
equations. However, as will be discussed later in this
section, the direct discrete simulation of this model
results in unacceptable inaccuracies because of the
nonlinear torque friction component.

To try to keep the speed advantage of discrete
update simulations, and still maintain reasonable
accuracy in the wheel model outputs, an ANN was
trained to map the functional relationship from the
torque input command at the kth discrete time step,
Tcom(k), and wheel speed at the kth time step, Wsp(k), to
the wheel speed for the next time step, Wsp(k+1). In
other words, the wheel speed from one time step to the
next was approximated. Figure 5 depicts the discrete-
time model of the reaction wheel, with a single-hidden
layer ANN (hidden layer with a tan sigmoid activation
function, the output layer with a pure linear function)
computing Wsp(k+1). A unit delay is in place to obtain
the current (kth step) wheel speed.

Wheel
Friction

Function

...

Tcom(k) W
sp
(k+1)

z -1
Wsp (k)

T
act
(k)

mux

Tcom(k)

Figure 5. Discrete reaction wheel model with an ANN.

The friction torque computation was done the same way
as in Figure 4. It was felt that there would be no real
advantage gained in substituting a separate ANN to
replace the simple quadratic friction function (Eq. 2),
which was a static map. Since the same model was
used for each of the three wheels in the assembly, the
same ANN could be used for each wheel.

Before the ANN for the wheel speed could be
trained, the appropriate input/output training data had to
be generated. To accomplish this, proper data points for
both the torque command Tcom and wheel speed Wsp ,
the two inputs to the ANN, had to be selected first.
With this specific wheel model, the expected operating
range for Tcom was assumed to be +/- 0.1 N-m, and +/-

6
American Institute of Aeronautics andAstronautics

300 RPM for Wsp. To get adequate coverage of data
points over these ranges, the Tcom points were taken in
equally-spaced increments of 0.005 N-m, while the Wsp

points were taken in increments of 3.0 RPM. With
these ranges and increments, the total number of
training input pairs (Tcom, Wsp) was 8,241. The
corresponding training output, or target, points were
then computed by taking each training input pair, and
running a MATLAB (v5.0)/Simulink (v2.0) simulation
of the continuous reaction wheel model (Figure 4) over
a specified time interval [0, Tstep]; the wheel speed value
at time Tstep was recorded as the desired target point for
that specific training pair. As mentioned earlier, for
this reaction wheel model, Tstep was set to 1.024
seconds. Each Simulink simulation used the second-
order, three-function-evaluation-per-step Bogaki-
Shampine variable-step integration routine, the
minimum and maximum step sizes allowed were set at
10-8 and 1.024 seconds, respectively; the relative and
absolute error tolerance parameters were set to 10-6.
Each Tcom input value was held constant over the
integration range [0, 1.024], while the corresponding
Wsp input value was entered as the initial wheel speed
value (i.e., at time 0) in the pure integrator block.

After the training data was generated, the ANN
could now be trained. Prior to the actual ANN training,
both the input and output training data were normalized
with respect to their absolute maximum values; by
keeping the training data in the [-1, 1] range, more
efficient use of the ANN training routines was obtained.
The training led to a feedforward ANN with one 10-
neuron, hidden layer (using a tan sigmoid activation
function) and a pure linear output layer. The training
was performed using the standard ÔtrainlmÕ function
from the MATLAB Neural Network Toolbox, which is
based on the Levenberg-Marquardt training algorithm
[Ref. 3]. Running on a Sun Ultra-2 Workstation, the
training of this ANN completed in less than 2.0
(elapsed time) hours. The training reduced the sum
squared error (see Eq. (1)) of the ANN down to a level of
2.98 x 10-5, which was deemed acceptable. Once the
training was completed, the final ANN weights and bias
numbers were scaled back to their true values. In
checking the accuracy of the approximation achieved by
this ANN, given the training input points, the mean
percent error between the true target points and the ANN
outputs points was 0.063% , and only 1.07% of the
points had errors greater than 1%.

Once the ANN-based model of the reaction wheel
assembly was developed, its performance, in terms of
accuracy and execution CPU time, was evaluated in
several discrete-time simulations under a specific set of
torque command input, Tcom, profiles. These 6000-
second torque command profiles for the roll, pitch and

yaw axis wheels, respectively, shown in Figure 6, were
a series of 1.024-second-wide pulses. In addition, a
small random signal was added to the pitch axis wheel
torque command. These could be typical torque
command profiles required to counter the motions of

Figure 6. Roll, pitch and yaw torque input command
 profiles.

scanning instruments on a spacecraft, for example. The
original continuous-time reaction wheel assembly
model, as shown in Figure 4, was also simulated using
the Simulink second-order, three-function-evaluation-
per-step Bogaki-Shampine variable-step integration
routine, with the minimum and maximum step sizes
allowed were set at 10-8 and 1.024 seconds, respectively.
The relative and absolute error tolerance parameters were
set to 10-6. The results of this simulation were
considered the ÔtrueÕ results, against which the other
simulations were tested. The average execution time for
this Ôtrue modelÕ simulation was 15.01 CPU seconds on
the Sun Ultra-2.

Using the ANN-based model of the reaction wheel
assembly, two different discrete-time simulations, both
running at a discrete update period of 1.024 seconds,
were performed to see if meaningful reductions in
simulation execution times can be achieved without
sacrificing accuracy down to unacceptable levels. Table
1 contains the execution times (in CPU seconds), the
rms and maximum absolute errors (as compared to the
Ôtrue modelÕ results from above) for three discrete-time
simulations . First, a MATLAB function file version of
the ANN-based discrete-time model was written; this
function was executed in MATLAB v5.0. The average
execution time for was 6.49 CPU seconds. In
comparing the wheel speed outputs from this discrete
function file simulation with those from the Ôtrue
modelÕ, very good agreement was observed; the

7
American Institute of Aeronautics andAstronautics

Table 1. Discrete-time simulation results for quadratic
 friction case.

Simulation
CPU
sec

rms
error

(RPM)

Max.
error

(RPM)

ANN MATLAB
function

roll axis wheel
pitch axis wheel
yaw axis wheel

6.49

0.0011
0.0049
0.0263

0.0092
0.0790
0.0417

ANN MEX file
roll axis wheel
pitch axis wheel
yaw axis wheel

0.35
0.0011
0.0049
0.0263

0.0092
0.0790
0.0417

discrete MATLAB
function

roll axis wheel
pitch axis wheel
yaw axis wheel

1.71

1.8437
1.3968
4.2915

41.5683
80.6037
63.6718

root-mean-square (rms) of the errors between ÔtrueÕ and
ANN-based discrete-time simulation outputs, over the
length of the simulation, were 0.0011 RPM for the roll
axis wheel, 0.0049 RPM for the pitch axis wheel, and
0.0263 RPM for the yaw axis wheel. These results
indicated that, although acceptable simulation accuracies
were achieved with the ANN-based model, the execution
time speed up was only a factor of 2.3.

This was somewhat expected, because the friction
nonlinearity was fairly benign, i.e., the Runge-Kutta
integration did not have to take many steps to converge
to the solution. More reduction in execution time can
be achieved if another compute language is used, one
with faster loop execution capability. To do this, the
ANN-based wheel model simulation was written in
FORTRAN-77, for execution as a MEX file called by
MATLAB. MEX files are dynamically linked
subroutines which MATLAB can load and execute like
regular MATLAB functions.

The third simulation was just a pure discrete-time
simulation (zero-order-hold integration, with no ANN)
of the wheel assembly, sampled at 1.024 seconds. This
simulation was also written as a MATLAB function,
and executed in MATLAB v5.0.

The results in Table 1 show that although the pure
discrete wheel model simulation executes at a faster rate,
its accuracy leaves much to be desired. Figure 7. shows
the roll axis wheel speed output time histories for this
case, from the Ôtrue modelÕ Simulink simulation (top),
from the ANN-based model MEX file simulation
(middle), and the pure discrete-time model simulation
(bottom). In these simulations, the initial angular
speed of all three wheels was 250 RPM.

Figure 7. Roll axis wheel speed simulation results.

Clearly, the ANN-based MEX file simulation results
matched the Ôtrue modelÕ results much better than did
the pure discrete-time simulation results. The
combination of the nonlinearity and the rapid dynamics
caused by the pulse command profile made it difficult
for the pure discrete model to accurately match the Ôtrue
modelÕ simulation, at the update period of 1.024
seconds. On the other hand, the ANN-based wheel
model simulations, while executing slower than the
pure discrete model simulation, gave much more
accurate results. The ANN-based wheel model MEX
file simulation gave wheel output results which were
very comparable to the Ôtrue modelÕ results, while
executing about 40 times faster, which was a fairly
significant speed up.

 Exponential Friction Function
In the second case, the wheel viscous friction

torque was modeled with an exponential function in
terms of Wsp, which is given below:

T aw e aw Wfric
aw

sp= =-0 01 0 01. * * ,. . (4)

As in the quadratic friction function case, an ANN-
based model of the reaction wheel assembly was
designed. Another 10-node, feedforward ANN, was
trained in the exact manner as reported in the previous
case. Running on the Sun Ultra-2 Workstation, the
training of this ANN completed in less than 2.0
(elapsed time) hours. The training reduced the sum
squared error of this ANN down to 3.009 x 10-4, which
was deemed acceptable. In checking the accuracy of this
ANN, given the training input points, the percent error
between the true target points and the ANN outputs
points were 0.419% on average, and only 1.32% of the

8
American Institute of Aeronautics andAstronautics

points had errors greater than 1%. It should be noted
that the percentage numbers above did not include those
target wheel speed points that were very close to zero
magnitude, since they made the percent error
calculations biasly inaccurate. In checking the absolute
errors, between ÔtrueÕ targets and ANN outputs for all
8,241 points, the mean error was 0.017 RPM, and the
maximum absolute error was 0.479 RPM.

Again, the original continuous-time model of the
reaction wheel assembly was simulated using the
Simulink second-order, three-function-evaluation-per-
step Bogaki-Shampine variable-step integration routine,
with the minimum and maximum step sizes allowed set
at 10-8 and 1.024 seconds, respectively. The relative and
absolute error tolerance parameters were set to 10-6. The
results of this simulation were considered the ÔtrueÕ
results, against which the other simulations were tested.
The average execution time for this Ôtrue modelÕ
simulation was 65.54 CPU seconds; the higher
magnitude and nonlinear nature of the exponential
friction model caused the Simulink integration routine
to take smaller time steps than with the quadratic
friction model, thus the longer execution time.

Using the ANN-based model of the reaction wheel
assembly, two different discrete-time simulations, both
running at a discrete update period of 1.024 seconds,
were performed for comparison with the Ôtrue modelÕ
Simulink simulation. Table 2 contains the execution
times (in CPU seconds) for three discrete-time
simulations, and the rms and maximum absolute errors
(as compared to the ÔtrueÕ results from above) for three
discrete-time simulations. First, the same MATLAB
v5.0 function file version of the discrete-time ANN-
based model, used in the previous case, was executed
using the same torque input profiles. The average
execution time was 6.5 CPU seconds. In comparing
the wheel speed outputs from this discrete function file
simulation with those from the Ôtrue modelÕ Simulink
simulation, very good agreement was observed; the
root-mean-square (rms) of the errors between ÔtrueÕ and
ANN-based discrete-time simulation outputs, over the
length of the simulation , were 0.0007 RPM for the
roll axis wheel, 0.0014 RPM for the pitch axis wheel,
and 0.0018 RPM for the yaw axis wheel. The advantage
of an ANN-based, discrete-time wheel model was really
brought out in this case with the higher nonlinear
friction model. The ANN-based model MATLAB
function simulation executed 10 times faster than its
corresponding Ôtrue modelÕ Simulink simulation, with
excellent results.

Again, to see if even more execution speed-up
could be achieved, the ANN-based model simulation
was written as a FORTRAN-77/MEX file.

Table 2. Discrete-time simulation results for
 exponential friction case.

Simulation
CPU
sec

rms
error

(RPM)

Max.
error

(RPM)

ANN MATLAB
function

roll axis wheel
pitch axis wheel
yaw axis wheel

6.50
0.0007
0.0014
0.0018

0.0139
0.0102
0.0068

ANN MEX file
roll axis wheel
pitch axis wheel
yaw axis wheel

0.35
0.0007
0.0014
0.0018

0.0139
0.0102
0.0068

discrete MATLAB
func.

roll axis wheel
pitch axis wheel
yaw axis wheel

1.75
8.6x104

233.480
233.883

2.9x105

394.034
434.861

Also, a pure discrete-time simulation of the wheel
assembly (i.e., no ANN) , sampled at 1.024 seconds,
was written for comparison with the ANN-based model
simulations. This simulation was also written as a
MATLAB function, and executed in MATLAB v5.0.

The results in Table 2 show that although the pure
discrete wheel model simulation still executed at a faster
rate (although it should be noted that its execution time
did increase slightly, where as the ANN-based model
simulation execution times were about the same as in
the previous case), its outputs were physically
meaningless. Figure 8. shows the roll axis wheel speed
output time histories for this friction case, from the
Ôtrue modelÕ Simulink simulation (top), from the ANN-
based model MEX file simulation (middle), and the pure
discrete-time model simulation (bottom). Clearly, the
ANN-based simulation results matched the Ôtrue modelÕ
results much better, while the pure discrete-time model
simulation results were physically meaningless for the
given sampling period of 1.024 seconds. The ANN-
based wheel model simulation gave wheel output results
which were very comparable to the Ôtrue modelÕ results,
while executing about 180 times faster, which was a
very sizable speed up.

It should be noted that in those cases where the
nonlinearity and/or rapid dynamics (relative to the
discrete step size) in the system are not significant, then
pure discrete-time model simulation performance was
found to be comparable to the ANN-based model
simulations. For example, in other tests using the

9
American Institute of Aeronautics andAstronautics

Figure 8. Roll axis wheel speed simulation results.

same reaction wheel model, with the wheel friction
being more linear (i.e., the coefficient associated with
the quadratic term in the viscous friction equation Eq.
(2) reduced in magnitude by a factor of 1000), the
differences in the ANN-based model simulation results
and the pure discrete-time model simulations results
were practically negligible. The same held true for
simulations with torque command input profiles, such
as low frequency pure sine waves, which caused only
slow varying time response outputs from the wheel
model. Therefore, the real advantage of ANNs is truly
seen when the dynamic model that is to be
approximated is commandingly nonlinear.

 Conclusions

This paper presented a specific application of
ANNs for rapid and efficient dynamics and control
analysis of flexible systems. Specifically, feedforward
neural networks were designed to approximate the
dynamics of components (over prescribed input ranges),
for use in simulations as a means to speed up the
overall time response analysis process. To capture the
recursive nature of dynamic components with artificial
neural networks, recurrent networks, which used state
feedback with the appropriate number of time delays, as
inputs to the networks, were employed. Once properly
trained, neural networks gave very good approximations
to nonlinear dynamic components at a fraction of the
cost of full nonlinear dynamic integration, and by their
judicious use, have paved a way for a potential speed up
in the overall analysis process. To illustrate this
potential speed up, an existing simulation model of a
spacecraft reaction wheel system was used, first
conventionally and then with an ANN-based model in
place. Simulation results indicated that, at least in the

presence of significant model nonlinearity or command
input profiles which cause fast varying responses, the
ANN-based model gave accurate answers, with
computational speed-ups up to a factor of 180.

 References

1S. Hayden, Neural Networks: A Comprehensive
Foundation, Macmillan College Publishing Co., New
York, 1994.
2 D.E. Rumelhart and J.L. McClelland, Parallel
Distributed Processing, Vol.1, MIT Press, Cambridge,
MA, 1986.
3M.T. Hagan and M.B. Menhaj, ÒTraining Feedfoward
Networks with the Marquardt AlgorithmÓ, IEEE
Transactions on Neural Networks, Vol. 5, No. 6,
November 1994, pp. 989-993.
4 K.S. Narenda, ÒAdaptive Control of Dynamical
Systems Using Neural NetworksÓ, Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive
Approaches, ed. by D.A. White and D.A. Sofge, Van
Nostrand Reinhold, New York, 1992, pp. 141-183.
5 K. Funahashi, ÒOn the Approximate Realization of
Continuous Mappings by Neural NetworksÓ, Neural
Networks, Vol. 2, 1989, pp. 183-192.
6 A.R. Gallant and H. White, ÒThere Exists a Neural
Network That Does Not Make Avoidable MistakesÓ,
Proceedings of the IEEE 2nd International Conference
on Neural Networks, 1988, pp. 657-664.
7 M.I. Elmasry (ed.), VLSI Artificial Neural Networks
Engineering, Kluwer Academic Publishers, Norwell,
MA, 1994.
8K. Wawryn and B. Streszewski, ÒLow Power VLSI
Neuron Cells for Artificial Neural NetworksÓ,
Proceedings of the 1996 IEEE International Symposium
on Circuits and Systems, 1996, pp. 372-375.

